

Membrane Insertion of a Dinuclear Polypyridylruthenium(II) Complex Revealed by Solid-State NMR and Molecular Dynamics Simulation: Implications for Selective Antibacterial Activity

Daniel K. Weber,^{*,†,‡} Marc-Antoine Sani,[‡] Matthew T. Downton,^{†,‡} Frances Separovic,[‡] F. Richard Keene,^{*,§,||} and J. Grant Collins[⊥]

[†]Computational Biophysics, IBM Research Australia, Melbourne, VIC 3010, Australia

[‡]School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia

[§]School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

^{II}Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, QLD 4811, Australia ^LSchool of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia

Supporting Information

ABSTRACT: Dinuclear polypyridylruthenium(II) complexes bridged by a flexible methylene linker have received considerable interest as potential antibacterial agents. Their potency and uptake into bacterial cells is directly modulated by the length of the bridging linker, which has implicated membrane interactions as an essential feature of their mechanism of action. In this work, a combination of molecular dynamics (MD) simulations and solid-state NMR was used to present an atomistic model of a polypyridylruthenium(II) complex bound and incorporated into a bacterial membrane model. The results of ³¹P, ²H, ¹H, and ¹³C NMR studies revealed that the antibacterial [{Ru(phen)₂}₂(μ -bb₁₂)]⁴⁺ complex (Rubb₁₂), where phen = 1,10-phenanthroline and bb₁₂ = bis[4(4'-methyl-2,2'-bipyridyl)]-1,12-dodecane), incorporated into a negatively charged model bacterial membrane, but only associated with the surface of a charge-neutral model of a eukaryotic membrane.

the surface of a charge-neutral model of a eukaryotic membrane. Furthermore, an inactive $[{Ir(phen)_2}_2(\mu-bb_{12})]^{6+}$ (Irbb₁₂) analogue, which is not taken up by bacterial cells, maintained only a surface-bound association with both bacterial and eukaryotic model membranes according to ³¹P and ²H NMR. The effects of Rubb₁₂ on ³¹P chemical shift anisotropy and ²H acyl chain order parameters for negatively charged membranes correlated with a membrane-spanning state of the complex according to MD simulation—in which the metal centers embed in the lipid head group region and the central void, created by the biconic shape of the complex, resulting in increasing disorder of lipid acyl chains and membrane-thinning. A transbilayer mechanism and membrane-spanning may be essential for the cellular uptake and antibacterial activity of this class of compounds.

INTRODUCTION

Over the last 30 years there has been considerable interest in utilizing inert polypyridylruthenium(II) complexes as noncovalent DNA and RNA binding agents.^{1–3} The ruthenium complexes can interact with nucleic acids through a variety of modes (electrostatic, intercalation, and groove binding), with the particular mode of binding being predictably governed by the metal complex structure. More recently, the antibacterial properties of the ruthenium complexes have also attracted attention.⁴ While mononuclear complexes have shown good antibacterial activity, particularly against Gram-positive bacteria, dinuclear ruthenium complexes appear to show greater potential as their activity is generally maintained against antibiotic-resistant bacterial strains.⁵ In particular, dinuclear polypyridylruthenium(II) complexes in which the metal centers are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,*n*-alkane ligand (bb_n) (Rubb_n, see Figure 1), show excellent antibacterial activity.⁵ Although the mechanism of action is not fully understood, it has been demonstrated that the activity of the Rubb_n complexes is related to the cellular uptake, with the activity of the ruthenium complexes and uptake into the bacterial cells increasing with the number of methylene groups in the bridging bb_n ligand.⁶ However, while Rubb₁₂ is highly active, the corresponding iridium(III) complex (Irbb₁₂, 6+ formal charge) is totally inactive and is not taken up by the bacterial cells.⁷ Furthermore, the mononuclear complex [Ir(Me₄phen)₃]³⁺ (where Me₄phen = 3,4,7,8-tetramethyl-1,10-

Received: September 23, 2016 Published: October 27, 2016

Figure 1. Structures of the inert metal complexes, Rubb_n (M = Ru, a = 4) and Irbb_n (M = Ir, a = 6).

phenanthroline) is also inactive and cannot cross the bacterial membrane to any significant extent,⁸ whereas the ruthenium-(II) analogue, $[Ru(Me_4phen)_3]^{2+}$ shows significant activity.⁶

In this work, we have investigated the membrane interactions of Rubb₁₂ and Irbb₁₂ with phospholipid multilamellar vesicles (MLV) by ³¹P and ²H solid-state NMR, generally employed to investigate membrane interactions of antimicrobial and amyloidogenic peptides.^{9–13} Changes in conformation and dynamics of the phospholipid head groups are reported through chemical shift anisotropy (CSA), spin-lattice (T_1) , and spin-spin (T_2) relaxation of the ³¹P nuclei, while changes in order of the acyl chains are determined directly from ²H quadrupolar coupling constants using deuterium-labeled lipids.¹⁴ Additional ¹H and ¹³C magic angle spinning (MAS) experiments were also carried out to directly observe perturbations of lipid resonances induced by Rubb₁₂. Maximum-entropy magic angle spinning (MEMAS)¹⁵ analysis of ³¹P and "dePaking" Fourier transform¹⁶ to resolve ²H spectra were employed to precisely determine changes in model eukaryotic (neutral) and bacterial (negatively charged) membranes. The ³¹P CSA and ²H quadrupolar couplings values were subsequently used to validate long-time scale molecular dynamics (MD) simulations of multiple Rubb₁₂ complexes either embedded or peripherally added to phospholipid bilayer membranes.

EXPERIMENTAL SECTION

Synthesis of Metal Complexes. Dinuclear Rubb₁₂ and Irbb₁₂ complexes $\Delta\Delta$ -[{Ru(phen)₂}₂(μ -bb₁₂)]Cl₄ and *rac*-[{Ir(phen)₂}₂(μ -bb₁₂)](CF₃SO₃)₆, respectively, were synthesized as reported previously.^{8,17,18}

NMR Sample Preparation. NMR samples were prepared by cosolubilizing lipids (Avanti Polar Lipids, Alabaster, AL) 1,2dimyristoyl-*sn*-glycero-3-phosphocholine (DMPC) and d_{54} -DMPC at 1:1 molar ratio, or 1,2-dimyristoyl-*sn*-glycero-3-phosphethanolamine (DMPE) and 1,2-dimyristoyl-*sn*-glycero-3-phospho-(1'-rac-glycerol) (d_{54} -DMPG) at 7:3 molar ratio, in chloroform/methanol (3:1 v/v) and drying to a thin film using a rotary evaporator. Films were suspended into deionized H₂O at ~10 mg/mL, and after three cycles of freezing and thawing between liquid N₂ and a 60 °C water bath were aliquoted into three equal volumes and then lyophilized.

Dilute buffer volumes containing dissolved $Rubb_{12}$ or $Irbb_{12}$ were added to lipid powders (to give 50 mg/mL phospholipid), followed by vortexing, and then lyophilized. Samples were rehydrated to 70% (w/w) with Milli-Q water and freeze-thawed three times prior to measurements.

Incorporation of Rubb_{12} into DMPE/DMPG (7:3) was performed by cosolubilizing the appropriate amount of DMPE, DMPG and Rubb_{12} in chloroform/methanol (3:1 v/v), followed by evaporation under argon stream. The film was then dissolved in cyclohexane and lyophilized overnight. Samples were rehydrated to 70% (w/w) with buffer in D₂O and freeze—thawed three times prior to measurements. Final samples consisted of 40 mM imidazole, 110 mM KCl, 1 mM EDTA at pH 7.4 and a lipid-to-metal complex molar ratio of 10:1.

³¹P Solid-State NMR. All solid-state experiments were conducted at either 37 or 60 °C on a Varian Inova (Palo Alto, CA) 600 MHz NMR equipped with HXY BioMAS 3.2 mm probe (Varian). ³¹P experiments were performed at 242.76 MHz with 57 kHz SPINAL64 ¹H decoupling, 3 s recycle delays, 50 kHz excitation, spectral width of 125 kHz, 4096 complex points, and externally referenced to 0 ppm using H₃PO₄. Static spectra were acquired using a single-pulse experiment. All spectra were processed using NMRPipe.¹⁹

Chemical shift anisotropy (δ , CSA) and asymmetry (η) parameters encoded in sidebands of slow-spinning ³¹P MAS spectra were extracted by Boltzmann-type maximum entropy (MEMAS) sideband analysis using software obtained from https://github.com/jdgehman/ BS-MAS.¹⁵ Fluid-phase systems were analyzed at 700, 1000, and 1200 Hz spinning speeds, solving for CSA values between -2 and 12 kHz in 50 Hz increments, and η values between 0 and 1 in 0.05 increments. Crystallite orientations used for matrix element calculations involved 2000 combinations of α and β angles from SIMPSON²⁰ crystal files and 64 γ angles uniformly dispersed over 2π .

Relaxation experiments were performed under 8 kHz MAS and fitted to a single exponential function using Gnuplot 4.6 in-built least-squares fitting functionality. ³¹P T_1 relaxation constants were determined from a two-pulse inversion–recovery experiment, and T_2 determined from a Hahn spin–echo experiment.²¹

²**H Solid-State NMR.** Static ²**H** spectra utilized a solid echo sequence²² at 92.1 MHz with 50 kHz excitation, 8192 complex points, 500 kHz spectral width, 0.5 s recycle delay, and a total echo delay of 80 μ s. Pake-pattern powder spectra²³ were dePaked to resolve quadrupolar splitting at 0° orientation using weighted Fourier transformation¹⁶ added as part of the NMRPipe 8.1 distribution.¹⁹ Reported lipid acyl chain order parameters (S_{CD}) were calculated from ²H (or D) quadrupolar splitting ($\Delta \nu_Q$) by $S_{CD} = (4/3)A_Q \Delta \nu_Q$, where A_Q is the C–D quadrupolar coupling constant of 168 kHz.²⁴

¹H Solid-State NMR. ¹H MAS experiments were performed at 10 kHz spinning speed with 94 kHz proton excitation, spectral width of 125 kHz and a recycle delay of 3 s. The spectra were zero-filled to 16k points and externally referenced to 1.9 ppm using adamantane (CH protons).

¹³C Solid-State NMR. Cross-polarization MAS at 10 kHz spinning speed with 10% proton ramp was used to prepare observable ¹³C magnetization.^{25,26} Briefly, a 94 kHz proton excitation pulse was followed by 1 ms of 45.5 kHz Hartmann–Hahn contact and 1250 complex points were acquired under 94 kHz SPINAL decoupling. A spectral window of 62.5 kHz and a recycle delay of 4 s were used. The FIDs were zero filled to 8k points and 75 Hz line broadening was applied. The spectra were externally referenced to 38.5 ppm using adamantane (CH carbons).

Molecular Dynamics Parameters. Partial charges for Rubb₁₂ were derived using a computationally efficient fragment-based method, in which the Δ -[Ru(phen)₂Me₂bpy]²⁺ center, where Me₂bpy is 4,4'dimethyl-2,2'-bipyridine, and decane linker were treated as discrete components in the assembly of the larger dinuclear complex (Figure 2A). By this method, various linkers may be substituted without timeconsuming rederivation of charges for the metal centers. Δ -[Ru(phen)₂Me₂bpy]²⁺ was constructed in UCSF Chimera²⁷ with the 4'-methyl of Me2bpy capped initially by a removable CH3 group for accurate charge-fitting, followed by geometry optimization and electrostatic potential (ESP) calculations using Gaussian09 (Rev. B.01). The B3LYP method and 6-31g* basis set was used for ligands, and LANL2DZ basis set for the ruthenium(II) center. Atom-centered partial charges were derived using restrained electrostatic potential (RESP) procedure²⁸ implemented in the AMBER14 distribution,² with intramolecular charge restraints (q = 0) applied to the capping CH₃ group (Figure 2A). RESP charges for the bridging alkyl chain were automatically generated by the R.E.D. Web server³⁰ with GAMESS geometry optimization of dodecane in extended conformation and intramolecular charge restraints (q = 0) applied to terminal CH₃ atoms (treated as capping groups). Two Δ -[Ru-(phen)₂Me₂bpy]²⁺ moieties and a bridging decane linker were then

Figure 2. (A) Fragment-based RESP charge derivation scheme of a methyl-capped Δ -[Ru(phen)₂Me₂bpy]²⁺ center and dodecane linker used to build the dinuclear Rubb₁₂ complex. (B) Example schematic of the phosphate chemical shift principal axis system components (σ_x^{PAS} , σ_y^{PAS} , and σ_z^{PAS}) of DMPC with respect to the simulation axis. The average angle of these vectors from the Z-axis and the order parameter of the glycerol g3 and g2 C–H bonds (marked χ) were used to determine ³¹P CSA ($\Delta\sigma$).

bonded together following elimination of CH_3 capping groups. Noncharge parameters developed for polypyridylruthenium(II) complexes³¹ were assigned to the ruthenium(II) centers and coordinating nitrogen positions, and the remaining atoms were allocated parameters from the General AMBER force field.³² RESP charges and assigned atom types are included in Table S1 in the Supporting Information.

Molecular Dynamics Simulations. The starting bilayer of DMPE/DMPG (90:38) was generated with 64 lipids per leaflet using the CHARMM-GUI Membrane Builder.³³ Head group PE and myristoyl atoms were assigned AMBER Lipid14 parameters;³⁴ and PG head group parameters were taken from the Lipid11 force field.³⁵ Starting structures for Rubb₁₂-lipid simulations were constructed with 12 Rubb₁₂ molecules placed either peripherally, incorporated, or half-peripheral and half-incorporated into the membrane. Systems were approximated to NMR samples by hydrating to 70% (w/w) with ~11000 TIP3P waters and, K⁺ and Cl⁻ ions³⁶ added to neutralize charges from DMPG lipids and Rubb₁₂ complexes, respectively, and to obtain 150 mM final salt concentration.

Simulations were run using NAMD 2.10 on IBM Blue Gene/Q CPU cores. A 10 Å cutoff was applied for evaluating electrostatic and van der Waals terms, with smoothing functions disabled. Long-range electrostatics were treated using the particle mesh Ewald method, 1-3 bonded interactions ignored, 1-4 electrostatics scaled by 0.83333333 and 1-4 van der Waals potentials halved for AMBER force field compatibility. The SETTLE algorithm was applied to water hydrogen atoms and SHAKE to all other hydrogen atoms. Temperature was maintained at 333.15 K by a Langevin thermostat and damping coefficient of 5 ps⁻¹. Pressure was controlled at 1.01325 bar using the

Langevin piston Nosé–Hoover method with oscillation period of 100 fs, damping time of 50 fs and anisotropic cell fluctuation. Electrostatic and bonded forces were evaluated using integration time steps of 2 fs and for all other nonbonded forces, 1 fs. Coordinates were saved every 10 ps for analysis.

Molecular Dynamics Analysis. Trajectories were analyzed according to Z-axis electron density profiles, lipid acyl chain order parameters and area-per-lipid measured using CPPTRAJ.³⁷ VMD was used for computing radial pair distribution functions, visualization³⁸ and execution of customized analysis scripts for calculating ³¹P CSA values according to the method following.

In NMR of phospholipids, full width ³¹P CSA ($\Delta\sigma$) depends on two unresolved modes of head group order: the first being the averaged orientation of the chemical shift principal axis system (σ^{PAS} , with Euler angles α and β) with respect to the magnetic field vector B_0 ; and the second being the order parameter, χ , of the glycerol backbone. These relate according to ^{13,14}

$$\Delta \sigma = \frac{3\chi}{2} [\sigma_x^{\text{PAS}} (1 - \cos^2 \alpha \sin^2 \beta) + \sigma_y^{\text{PAS}} (1 - \sin^2 \alpha \sin^2 \beta) + \sigma_z^{\text{PAS}} \sin^2 \beta]$$
(1)

where σ_x^{PAS} , σ_y^{PAS} , and σ_z^{PAS} were taken in this work as -76, -17, and 110 ppm, respectively, as measured for analogous barium diethylphosphate (BDEP) crystals.³⁹ The chemical shift principal axis was defined in MD trajectories (Figure 2B) by dynamically assigning σ_y^{PAS} and σ_x^{PAS} as the average and cross product of the two nonesterified P– O bond vectors, respectively, and σ_z^{PAS} as the cross product of σ_y^{PAS} and σ_x^{PAS} . The true principal axis system was then obtained by correcting the elements with a Z-rotation of 9° and X-rotation of 13°.³⁹ The average angles (over all lipid and all simulation snapshots) of σ_x^{PAS} , σ_y^{PAS} , and σ_z^{PAS} from the Z-axis, denoted ϑ_{xy} , ϑ_y , and ϑ_{zy} respectively, define Euler angles α and β by

$$\alpha = \cos^{-1} \left(\frac{\cos \theta_x}{\sin \theta_z} \right) \tag{2}$$

where $\beta = \vartheta_z$.¹³

Lastly, the order parameter χ , was determined from the average orientation of the glycerol g3 and g2 C–H bond vectors to the Z-axis (θ_z) by

$$\chi = -3\left\langle \frac{3\cos^2\theta_z - 1}{2} \right\rangle = -3S_{\rm CH} \tag{3}$$

which have proven reliable and experimentally practical indicators of head group order. $^{\rm 40}$

Dye Release Assays. Lipids, 1-palmitoyl-2-oleoyl-sn-glercero-3phosphocholine (POPC), sphingomyelin (SM, porcine brain extract), 1-palmitoyl-2-oleoyl-sn-glercero-3-phosphoethanolamine (POPE), cardiolipin (18:1, TOCL) and 1-palmitoyl-2-oleoyl-sn-glercero-3-phosphoglycerol (POPG), purchased from Avanti Polar Lipids, and cholesterol (Chol; Aldrich), were used to prepare systems of POPC, POPC/SM/Chol (1:1:1 molar ratio), POPG/TOCL (3:2) and POPE/POPG (7:3 molar ratio) by cosolubilizing lipid components in chloroform/methanol (3:1) and drying to a thin film using a rotary evaporator. Lipids were resuspended into deionized water and lyophilized. Dye-loaded and dye-free large unilamellar vesicles (LUVs, 100 nm diameter) were prepared to 15 mM by suspending lipids in either dye-solution (55 mM carboxyfluorescein, 40 mM imidazole, 165 mM KOH, 1 mM EDTA) or buffer (40 mM imidazole, 110 mM KCl, 1 mM EDTA, pH 7.4), respectively, three cycles of freezing with liquid N_2 and thawing in a 40 $^\circ\text{C}$ water bath, then extrusion by 11 passes through a 0.1 μ m polycarbonate membrane (Avanti). Dye-filled vesicles were isolated using a PD-10 gel filtration column (GE Healthcare) and lipid concentrations of eluted volumes were confirmed by total phosphorus assay.⁴¹ All LUV systems were stored at room temperature and used within 1 week of preparation.

Dye release assays were performed in clear polystyrene 96-well (200 μ L sample volume) tissue culture plates (Falcon) and increase in

Figure 3. Solid-state (A) slow spinning ³¹P MAS and (B) static ²H NMR of DMPC/ d_{54} -DMPC (1:1) MLV at 37 °C (top row) with either Rubb₁₂ (middle row) or Irbb₁₂ (bottom row) added at 1:10 molar ratio to phospholipid. ³¹P η and $\Delta\sigma$ parameters were extracted from fitted MAS sideband intensities from MEMAS analysis¹⁵ using three slow-spinning speeds (0.7, 1.0, and 1.2 kHz; only 1.0 kHz spectra are shown). The overall fits to sideband manifolds are shown as solid red lines; individual fits of the central MAS sidebands are shown for illustration (red dotted lines); and respective surface profiles of η and $\Delta\sigma$ contributions from MEMAS analysis are displayed in the middle column and annotated according to peak positions of dotted-outlined regions. Static ²H spectra (B) are marked with quadrupolar couplings ($\Delta\nu_Q$) of terminal CD₃ deuterons and most-ordered CD₂ deuterons of the upper lipid acyl chain. Values of $\Delta\nu_Q$ were picked from overlaid dePaked¹⁶ spectra (dotted line, transformed to 0° orientation and halved).

carboxyfluorescein fluorescence intensity as a result of LUV permeabilization was measured at 30 °C using a FLUOstar Optima plate reader with $\lambda_{\rm ex}$ = 492 nm excitation and $\lambda_{\rm em}$ = 520 nm emission filters and shaken prior to each measurement (one scan every 2 min for 20 min). Percentage dye release was determined from the maximal leakage induced by 0.1% Triton X-100 and subtraction of basal fluorescence intensity.

RESULTS AND DISCUSSION

Surface Association of Rubb₁₂ and Irbb₁₂ to a Fluid Zwitterionic Membrane. Perturbations to the structure and dynamics of lipid head group and acyl chains were used to determine the mode of interaction of Rubb₁₂ and Irbb₁₂ against MLV models. The ³¹P nucleus is 100% abundant, which makes ³¹P NMR a sensitive measure of head group perturbations through CSA, T_1 and T_2 relaxation measurements. Conversely, ²H is naturally absent from lipid, but with labeling, quadrupolar coupling values, $\Delta \nu_{Q}$, measured by solid-state NMR reports perturbations of acyl-chain order without background from unlabeled species.

A zwitterionic DMPC/ d_{54} -DMPC (1:1) MLV system was used to model eukaryotic cells, which are much less susceptible to uptake and toxicity of Rubb₁₂ complexes compared to bacterial cells.⁴² Indeed, only mild alterations to both ³¹P and ²H Pake-pattern spectra (Figure 3) suggested Rubb₁₂ and Irbb₁₂ had limited ability to permeate through, or accumulate into, the hydrophobic acyl region of the fluid-phase (37 °C) zwitterionic system. However, surface interactions had a measurable effect on ³¹P CSA parameters, $\Delta\sigma$ and η , extracted from sideband intensities (using 0.7 to 1.2 kHz MAS) by Boltzmann-type maximum entropy analysis (MEMAS).¹⁵ MEMAS was developed previously as a model-free alternative to traditional least-squared fitting of static ³¹P lineshapes, which generally suffer from having to account for isotropic chemical shift position, magnetic field-induced lipid alignment and T_2 line-broadening.

MEMAS surface plots of $\Delta\sigma$ and η contributions are depicted and annotated in Figure 3A. Rubb₁₂ caused small, but measurable, alteration to head group order and/or dynamics by 5% increase in $\Delta\sigma$. Similarly, Irbb₁₂ caused 2% increase in $\Delta\sigma$ of the main symmetric component ($\eta = 0$); however, η became more broadly distributed and a second component of 10% intensity with $\Delta\sigma$ reduced 28% and full asymmetry was suggested by MEMAS ($\Delta\sigma = 33.1$ ppm, $\eta = 1$; Figure 3A), and maybe associated with a strongly bound population, in which lipid long-axis rotation was frozen to the NMR time scale and head group structure/order heavily affected.

³¹P T_1 relaxation experiments, summarized in Table 1, showed that neither Rubb₁₂ or Irbb₁₂ had a measurable effect on nanosecond dynamics of DMPC head groups at 37 °C – i.e., rotations of lipid long axis and phosphate/glycerol bonds.⁴³ However, while Irbb₁₂ should have produced some alteration to T_1 , as indicated by increase in η , the affected component only constituted 10% of the signal, and could not be reliably deconvoluted by multiexponential fitting to relaxation curves (see Supporting Information Figure S1 for relaxation fits). ³¹P T_2 , in contrast, doubled with Rubb₁₂, and increased half as much with Irbb₁₂, which suggested relaxation contributions from millisecond to microsecond dynamics were heavily reduced by both complexes–i.e., collective viscoelastic bilayer

Table 1. Summary of ³¹P Relaxation Experiments

sample	T_1 (s) ^a	$T_2 \text{ (ms)}^a$
DMPC (37 °C)	0.67 ± 0.01	6.3 ± 0.3
+Rubb ₁₂	0.67 ± 0.01	12.6 ± 0.3
+Irbb ₁₂	0.68 ± 0.01	9.8 ± 0.4
DMPE/PG (60 °C)	0.76 ± 0.01	4.3 ± 0.2
+Rubb ₁₂	0.76 ± 0.02	9.7 ± 0.2
$+Irbb_{12}$	0.67 ± 0.02	6.5 ± 0.2

 ${}^{a}T_{1}$ and T_{2} relaxation times, with asymptotic standard errors, were calculated from MAS spectra by fitting a single exponential using Gnuplot 4.6. Fits are shown in Supporting Information Figure S1.

motions.⁴³ Furthermore, T_2 -lengthening was also evident from sharpening of ³¹P powder patterns (Figure 3A), which extended to lipid-acyl ²H spectra only with Rubb₁₂ (Figure 3B).

Similar to ³¹P powder patterns, highly convoluted unoriented ²H Pake powder-pattern spectra required further processing to resolve subtle perturbations of quadrupolar couplings induced by surface-bound metal complex. In this work a weighted Fourier transformation was used to "dePake" spectra to an oriented form (i.e., a pure signal consistent with all lipids aligned parallel, or 0°, to the magnetic field). With dePaking, the maximum $\Delta \nu_{Q}$ which we assigned to the most-ordered CD₂ groups of the upper acyl chain, was reduced 1% by Rubb₁₂ but increased 1% by Irbb₁₂ (Figure 3B).

Rubb₁₂ **Insertion into a Negatively Charged Bilayer.** DMPE mixed with a 30% molar ratio of d_{54} -DMPG was used to model the negatively charged *E. coli* outer membrane.⁴⁴ At 37 °C, this system is between the phase transition temperatures of DMPE (50 °C) and DMPG (23 °C), and heating to 60 °C was required to obtain fluid-phase NMR spectra (Figure 4). Similar to DMPC, both Rubb₁₂ and Irbb₁₂ caused detectable head group alterations reflected by changes in ³¹P NMR $\Delta\sigma$ and η components (Figure 4A). However, only with Rubb₁₂ was widespread disordering of the acyl region observed in ²H spectra (Figure 4B), in which the upper CD₂ and terminal CD₃ positions experienced reductions of 21% and 34%, respectively. These reductions are consistent with insertion of Rubb₁₂ into the hydrophobic interior, while Irbb₁₂ showed no such interaction, which is in line with bacterial uptake and toxicity observed for Rubb₁₂, but not for Irbb₁₂.

Interestingly, despite dramatic perturbation of the membrane interior, ³¹P CSA parameters were only slightly affected by Rubb₁₂ as reflected by only a minor +0.4 ppm increase in $\Delta \sigma$. While little change in head group structure may be inferred, further analysis of molecular dynamics simulation suggested a combination of disordering and head group reorientation could cancel net changes to $\Delta\sigma$ (detailed later). Furthermore, MEMAS analysis suggested Rubb₁₂ reduced heterogeneity of DMPE/DMPG ³¹P ČŠA (i.e., fewer components and narrower distributions), and a discrete highly ordered population (~4%, $\Delta \sigma = 53.1$ ppm and $\eta = 0.2$) was also observed with Rubb₁₂ (Figure 4A), which may be assigned to a strongly bound population of lipid with slowed axial rotation. Irbb₁₂ had a larger impact on head group structure compared to Rubb₁₂ as reflected by a 4.4 ppm increase and a broadening of $\Delta\sigma$ contributions.

Similar to their effects on fluid-phase DMPC, both complexes also caused lengthening of T_2 relaxation times, at roughly the same magnitudes (i.e., ~125% with Rubb₁₂ and ~50% increase with Irbb₁₂, Table 1), which implies that effects to millisecond bilayer dynamics were nonspecific to lipid type. Furthermore, Irbb₁₂ caused ~10% reduction to T_1 , suggesting slight perturbation to nanosecond dynamics when associated with fluid DMPE/DMPG bilayers.

Figure 4. Solid-state (A) 1.0 kHz slow spinning ³¹P MAS and (B) static ²H NMR of DMPE/ d_{54} -DMPG (7:3) at 60 °C (top row) with either Rubb₁₂ (middle row) or Irbb₁₂ (bottom row) added at 1:10 molar ratio to phospholipid. MEMAS surface profiles of ³¹P η and $\Delta\sigma$ contributions (middle column) were calculated using sideband intensities from 0.7, 1.0, and 1.2 kHz spinning speeds. Additional details are included in the caption of Figure 3.

Figure 5. Solid-state (A) ³¹P, (B) ¹³C, and (C) ¹H NMR spectra of DMPE/DMPG (7:3) with Rubb₁₂ incorporated at 1:10 molar ratio to phospholipid. All spectra were acquired under 10 kHz MAS at 60 °C in D₂O. Acyl and head group ¹³C/¹H resonances were assigned by analogy to published assignments.^{48–50} (D) Lipid atom nomenclature used for NMR assignments and (E) ¹³C chemical shift perturbations to lipid resonances upon incorporation of Rubb₁₂.

Tabl	e 2.	Summary	of	Lipid	Bila	yer	Pro	perties	Calcu	lated	from	MD	Simula	ations
------	------	---------	----	-------	------	-----	-----	---------	-------	-------	------	----	--------	--------

measurement	DMPC ^a	$DMPE/DMPG^b$					
$\operatorname{Rubb}_{12}(I, E)^{c}$	0, 0	0, 0	0, 12	6, 6	12, 0		
glycerol order, χ	0.64	0.56, 0.52	0.54, 0.59	0.49, 0.50	0.51, 0.49		
ϑ_x (deg)	47	53, 52	52, 51	49, 52	46, 52		
$\vartheta_z \; (\mathrm{deg})$	70	69, 70	68, 70	67, 68	67, 68		
CSA, $\Delta\sigma$ (ppm)	44	33, 32 (33)	32, 37 (33)	30, 28 (29)	33, 28 (31)		
exptl ^d	46	40		40			
$S_{CH'}$ CH ₂ (max)	0.197	0.286, 0.286	0.276, 0.278	0.185, 0.174	0.142, 0.136		
exptl ^d	0.206	0.221	0.175				
S _{CH} , CH ₃	0.021	0.039, 0.038	0.036, 0.038	0.022, 0.018	0.016, 0.013		
$exptl^d$	0.025	0.028		0.018			
$D_{\rm HG-HG} (\rm \AA)^e$	38	40, 43	40, 41	36, 37	33, 31		
$D_{\mathrm{PO}_4-\mathrm{PO}_4}$ (Å) ^e	35	39, 40	39, 39	34, 36	31, 28		
$D_{\text{gly-gly}}$ (Å) ^e	27	32, 32	32, 32	28, 29	25, 21		
$D_{\mathrm{Ru-Ru}}$ (Å) ^e					24		

^aSimulations of DMPC₁₂₈ were conducted at 37 °C with the same parameters used for DMPE/DMPG. Tabulated measurements are from 200 ns of equilibrated simulation. ^bTabulated measurements were calculated individually for DMPE and DMPG lipids. Parentheses specify a weighted average measurement. ^cRubb₁₂ complexes were either absent, incorporated (I) or external (E) to DMPE/DMPG in starting structures. ^dExperimental values were taken from MEMAS analyses (Figures 3B and 4B). ^eThickness (D) at atoms constituting ethanolamine/glycerol (HG), phosphate (PO₄), backbone glycerol (gly) and [Ru(phen)₂(Mebpy-CH₂)]²⁺ of incorporated Rubb₁₂ were calculated from electron density profiles included in Supporting Information Figure S3.

Additional ¹H and ¹³C MAS experiments using nondeuterated DMPE/DMPG lipids were carried out to further characterize the interaction with Rubb₁₂. Diamagnetic ring currents of aromatic compounds, such as the polypyridyl ligands of Rubb₁₂, cause distinctive shielding/deshielding effects to nuclei within 5.5 Å,⁴⁶ and are effective in determining the position of aromatic residues of transmembrane peptides in bilayers based on selective chemical shift perturbations to lipid signals.⁴⁷ To enhance resolution, Rubb₁₂ was incorporated into lipids by codissolution in an organic solvent to homogenize Rubb₁₂ interactions throughout inner and outer MLV bilayers, rather than it being added as an aqueous solution to lyophilized lipids, as was done for ³¹P and ²H NMR studies where resolution was not as critical. Static ³¹P spectra confirmed the lamellar phase was still obtained and $\Delta\sigma$ was unchanged after Rubb₁₂ incorporation. Under 10 kHz MAS, ³¹P NMR resolved slight upfield perturbations to isotropic DMPG and DMPE signals of -0.05 and -0.07 ppm, respectively (Figure 5A). Lipids signals were well resolved in ¹³C and ¹H spectra (Figure 5B and C). Chemical shift perturbations occurred throughout the entire head group and acyl region, which further supports partitioning of Rubb₁₂ into the hydrophobic interior of the

Figure 6. Molecular dynamics snapshots of 12 Rubb₁₂ molecules initially placed either (A) external, (B) half-inserted, and (C) fully inserted into a DMPE/DMPG (90:38) bilayer. Simulations were constructed to approximate solid-state NMR samples according to hydration (70% w/w to lipid, glass surface depiction), Na⁺ ions (DMPG salt, black spheres), K⁺ ions (0.15 M, black spheres) and Cl⁻ ions (0.15 M and Rubb₁₂ salt, gray spheres). Tan transparent spheres represent lipid phosphorus atoms. (D) MD snapshot of a single transmembrane Rubb₁₂ complex, one of 12 inserted in (C), showing surrounding lipid in direct contact with $[Ru(phen)_2(Mebpy-CH_2)]^{2+}$ centers. (E) Average number of pairwise atom–atom contacts between heavy atoms of $[Ru(phen)_2(Mebpy-CH_2)]^{2+}$ centers and selected lipid carbons within 5 Å. Average contacts are normalized by the number of carbons associated with each lipid position. (F) *Z*-axis electron density profiles of Rubb₁₂ fully inserted into DMPE/DMPG calculated from 200 ns of equilibrated simulation. Profiles constitute all atoms belonging to myristoyl chains (MY), $[Ru(phen)_2(Mebpy-CH_2)]^{2+}$ centers, water and phosphate (PE–PO₄ and PG–PO₄). More complete electron density profiles for systems with none and half of Rubb₁₂ inserted are included in Supporting Information Figure S3.

DMPE/DMPG system. Perturbations to ¹H signals were more prominent but ¹³C NMR was able to distinguish the carbonyl C^1 position and resolve C^3 , C^4 , C^{12} and C^{13} positions for a more-complete perturbation profile (Figure 5E), whereby maximal upfield ¹³C shifts occurred at DMPG C β , glycerol g3, carbonyl C1 and acyl C4-11 carbons. 2D 1H NOESY was also performed (Supporting Information Figure S2), and although NOESY spectra could not unambiguously resolve aromatic protons of Rubb₁₂, cross peaks consistent with intermolecular contacts between lipid C4-13H2 and Rubb12 bpy-H3/H3', phen A-H2, phen A/B-H3/H9, and bpy-H6/ H6' were observed. Weak cross peaks between the bridging alkyl chain and aromatic protons (bpy-H3', bpy-H5', phen A-H2, and phen A-H3) were observed in solution-state ROESY spectra of aqueous Rubb₁₂ (Supporting Information Figure S2), consequently the Rubb₁₂ signals from the alkane bridge could overlap with signals from lipid C^2H_2 and $C^{4-13}H_2$ in solid-state NOESY spectra. However, the well-resolved upfield bpy-H5' showed no contacts for aliphatic protons with lipids present, which suggests that the linking chain adopted an extended conformation. Furthermore, cross peaks between bpy-H6/H6' and CH₂ protons at 1-1.5 ppm were not observed in ROESY spectra, but were in NOESY spectra with lipid. Therefore, cross peaks between aromatic Rubb₁₂ ligands and aliphatic protons at 1-1.5 ppm were most likely due to intermolecular lipid contact and not intramolecular folding.

Experimental Validation of Lipid-Bilayer Simulations. The method for calculating ³¹P CSA from MD simulations, which when combined with experimental values determined from MEMAS analysis, can provide a comprehensive description of head group conformation and order. The principle of this method is analogous to the widely used method for deriving lipid acyl order parameters, in which the angle of the C–H (or C–D) bond vector to Z-axis (θ) is taken to calculate the ensemble-averaged $S_{\rm CH}$ according to $S_{\rm CH} =$ $\langle 1.5\cos^2 \theta - 1 \rangle$, where $S_{\rm CH}$ may then be multiplied by $(4/3)A_Q$ $(A_Q = 168 \text{ kHz})$ to generate the quadrupolar splitting for ²H NMR. Similarly, ³¹P CSA is scaled to the glycerol order parameter (χ), but also depends on the ensemble-averaged orientations of the $\sigma_x^{\rm PAS}$, $\sigma_y^{\rm PAS}$, and $\sigma_z^{\rm PAS}$ components of the anisotropic chemical shift tensor (Figure 2B), namely, angles ϑ_x and ϑ_z (i.e., angles of $\sigma_x^{\rm PAS}$ and $\sigma_z^{\rm PAS}$ from the Z-axis), which together with χ values are detailed in Table 2.

Using 200 ns of MD of equilibrated DMPC as a control, simulated ³¹P CSA were within 5% of experimentally derived values: $\Delta \sigma = 44$ ppm compared to 46 ppm (Table 2). The minor difference may be attributed to the order parameter $\chi = 0.64$ being slightly lower than an older experimental value of $0.66^{40}_{,40}$ but is still within a revised range of $0.6 \pm 0.1^{51}_{,51}$ while angles $\vartheta_x = 47^\circ$ and $\vartheta_z = 70^\circ$ fall within a range of $\vartheta_x = 55^\circ$ and $\vartheta_z = 90^\circ$ to $\vartheta_x = 30^\circ$ and $\vartheta_z = 90 \pm 25^\circ$ suggested previously.¹³ Furthermore, recent evaluations of head group order parameters obtained from popular lipid force fields have described AMBER's Lipid14 force field (used in this work) as being almost within experimental error.⁵² "Forking", however, which describes the known magnetic-inequivalence of the two

hydrogens bound at each of the g3 and g1 positions,⁵³ is known to be unusually large for this force field⁵² and may influence our simulated ³¹P CSA values, as g3 C–H order parameters factor into the calculation (eq 3). In addition, simulated ²H acyl-tail order parameters for DMPC were within 5% of our experimentally determined values (Table 2), which is unsurprising since the Lipid14 force field has been rigorously optimized for similar measurements.³⁴

Simulations involving mixed DMPE/DMPG bilayers were more complex owing to the negative charge of DMPG, and Na⁺, K⁺, and Cl⁻ ions were added to match solid-state NMR conditions. Acyl-chain order parameters of the DMPE/DMPG system were 27% and 40% greater in the upper and lower carbons, respectively (Table 2), in which the large deviations were likely to be a condensation-artifact arising from adhesion of cations to the membrane interface.^{54,55} In an attempt to alleviate this effect, Na⁺ ions were replaced with larger K⁺ ions to reduce the depth of penetration of the positive charge.⁵⁴ An alternative method to counteract condensation of negative bilayers also includes using the larger Lennard-Jones radii of ions in the AMBER ff99 force field.56,57 However, neither method had any effect on our DMPE/DMPG simulation, probably because smaller PE head groups are still penetrable by the larger ions. Due to inaccuracies in ion parameters, our simulations with DMPE/DMPG were used as qualitative models of our experimental NMR data.

³¹P CSA values calculated from DMPE/DMPG simulations showed significant deviation compared to experiments – $\Delta \sigma$ = 33 ppm compared to 40 ppm (Table 2). The error appears entirely attributable to the order parameter (χ = 0.55, weighted to DMPE:DMPG lipid ratio), which is considerably lower than the expected experimental value of 0.66.⁴⁰ Chemical shift tensor angles ϑ_x = 53° and ϑ_z = 69° seem appropriate. For example, the σ_x^{PAS} component of the chemical shift tensor, which lies approximately along the head group axis (Figure 2B), was tilted on average 6° further away from the *Z*-axis for PE/PG compared to the PC head group (Table 2), and possibly due to greater freedom of head group motion since PE is smaller head group than PC.

Molecular Dynamics Simulations of Rubb₁₂ with DMPE/DMPG Bilayers. Insertion of Rubb₁₂ into the DMPE/DMPG membrane was evident in the solid-state ²H experiments, which was further investigated by MD simulations. The availability of a generalized set of AMBER-compatible parameters for polypyridylruthenium(II) complexes^{31,58} made possible simulations of 12 Rubb₁₂ molecules placed external, incorporated and half-external/half-incorporated relative to the membrane (Figure 6A-C). MD simulations were matched to solid-state NMR studies in terms of lipid to Rubb₁₂ stoichiometry, hydration level, lipid composition, temperature and salts. Convergence of the simulations were assessed by area-per-lipid values, which stabilized after 50 ns at 52.7 \pm 0.9 Å² for lipid only, 53.6 \pm 0.9 Å² with Rubb₁₂ external, 69.5 \pm 1.6 ${
m \AA}^2$ with half the Rubb₁₂ incorporated and 82.0 \pm 1.1 ${
m \AA}^2$ with all Rubb₁₂ incorporated (Supporting Information Figure S4). Rubb₁₂ complexes required manual insertion as spontaneous diffusion events across the membrane did not occur in the time frame simulated (250 ns). The result is not surprising as the desolvation penalty associated with diffusing a [Ru- $(phen)_2(Mebpy-CH_2)]^{2+}$ center through the hydrophobic interior is estimated around +7 kJ mol⁻¹ according to an experimental octanol-water partition coefficient $(\log P)$ of $-2.9.^{\circ}$ Such a high kinetic barrier may explain why several

hours of incubation with Rubb, complexes are required for maximal toxicity and uptake into bacterial and human cell lines.^{5,6,59} Observation of diffusion would likely require biased simulations, which are outside the scope of this work, and may also proceed via less energetically costly mechanisms, such as deformation of the membrane^{60,61} to preserve the hydration shell of the Rubb₁₂ centers. Furthermore, it is noteworthy that Rubb₁₂ complexes were observed to cycle between extended and collapsed conformations, and form short-lived aggregates. Intramolecular folding has been suspected to be responsible for offsetting gains in lipophilicity from substituting Rubb_n complexes with methylene linkers greater than 10 carbons. In addition, aggregation, combined with collapse into triangular amphiphilic structures, may allow Rubb₁₂ complexes to cooperatively disrupt cylindrical lipid packing and stabilize highly curved aggregates.⁶² Highly curved species were identified as intense isotropic components in static ³¹P NMR lineshapes of gel-phase DMPC and DMPE/DMPG with Rubb₁₂ included (see Supporting Information Figure S5 and Table S2).

With Rubb₁₂ initially placed externally, a single complex was observed to bind the surface of DMPE/DMPG over the entire length of the simulation. The mode of this interaction is depicted in Figure 6A, for which the two metal centers of Rubb₁₂ are embedded at the level of phosphate and the alkyl linker is dipped into the hydrophobic interior of the membrane. Alterations to lipid head group and acyl chain structure were observed, which included selective ordering of PG head group χ by $\sim 10\%$ and disordering of the upper and lower acyl carbons by 3% and 5%, respectively (Table 2). The head group ordering observed in simulation correlates with the experimentally observed ordered population of ~4%, $\Delta \sigma$ = 53.1 ppm and η = 0.2 (Figure 4B). However, comparisons of $\Delta \sigma$ values with nonzero η contributions are difficult to make as MD time scales are far too short to sample microsecond to millisecond rotational dynamics that underpin η .⁴³

While interfacial association of Rubb₁₂ to DMPE/DMPG may explain a small distinct population (4%) of ordered head groups in ³¹P NMR spectra, the interaction does not account for large reductions in lipid acyl S_{CD} parameters observed experimentally. Nor does it explain widespread Rubb₁₂-induced perturbations throughout acyl¹H and ¹³C resonances in Figure 5B and C. However, with Rubb₁₂ (see Figure 6B and C), S_{CH} parameters fell 36% and 46% (upper and lower carbons) for half-incorporated, and 51% and 61% when all were incorporated (Table 2). These values, particularly with half incorporated, compared more favorably to S_{CD} reductions of 21% and 34% observed experimentally (see Figure 4C). Therefore, the NMR measurements were likely for DMPE/ DMPG undergoing incomplete insertion of Rubb₁₂ when added to lipid. DMPE/DMPG would have a limited capacity for Rubb₁₂ as dissipation of negative charge would occur with each successive insertion event. Furthermore, incorporated Rubb₁₂ had distinguishable preference for contacting PG head groups in the MD simulations (see Figure 6D and E), but also caused proportionate displacement of Na⁺ and K⁺ from PE and PG head groups (see radial pair distributions in Figure S4). However, alleviation of condensation artifacts by ion-displacement would also contribute to S_{CH} reductions and make quantitative comparison of simulation and experiment difficult.

Incorporated Rubb_{12} also appeared to slightly reduce acyl S_{CH} parameters for DMPG relative to DMPE (Table 2). Overall membrane-thinning of up to 9 Å was observed as

indicated by the electron density profiles of atoms constituting ethanolamine (PE)/glycerol (PG), phosphate, and backbone glycerol (Table 2 and Figure 6F). Thinning appeared to be the result of the Ru(II) metal centers of Rubb₁₂ ($D_{Ru-Ru} = 24$ Å) being insufficient to span the membrane bilayer thickness of ~40 Å at the phosphate of $Rubb_{12}$ -free DMPE/DMPG. Contacts from MD placed the interaction of $[Ru-(phen)_2(Mebpy-CH_2)]^{2+}$ centers central to the lipid head group phosphorus atoms (Figure 6E) and spread throughout acyl chains, in agreement with ¹³C and ¹H MAS NMR (Figure 5B and C). Note, however, that MD contacts cannot be compared directly since the direction and magnitude of chemical shift perturbations depend strongly on the orientation of affected nuclei with respect to aromatic ligands of Rubb₁₂ (i.e., whether occupying shielding or deshielding zones). The representative model in Figure 6D highlights the local membrane structure that occurs with Rubb₁₂ incorporated, in which the membrane is thinned considerably to accommodate metal centers in the head group region. Thinning may be promoted by the bulkiness of the [Ru(phen)₂(Mebpy-CH₂)]²⁺ centers relative to the alkyl linker, which provides Rubb₁₂ with biconic shape in comparison to the cylindrical shape of lipids. For example, the area occupied by a single $[Ru(phen)_2(Mebpy (CH_2)$ ²⁺ center, based on increase of area per lipid upon incorporation, was estimated at ~ 130 Å², which is roughly twice as much as lipid, yet Rubb₁₂ packs only a single chain into the hydrophobic core of the membrane. The packing void is, therefore, accommodated by increasing disorder of lipid chains-as observed experimentally by ²H NMR (Figure 4B). Furthermore, positioning of the metal centers at the glycerol, which is chiral at the g2 carbon, may possibly factor into the slight gain in antibacterial activity observed for $\Delta\Delta$ -Rubb_n complexes over their $\Lambda\Lambda$ -counterparts.⁵

With the bulky Rubb₁₂ centers occupying the glycerol region of DMPE/DMPG, perturbations to experimental ³¹P CSA would be expected to be larger than only +0.4 ppm (Table 1). Indeed, the MD simulations suggested significant disordering of χ , which would have theoretically caused an experimentally detectable 10% reduction of $\Delta\sigma$ (-3 to -4 ppm). However, using fully inserted Rubb₁₂ as an example, a shift in PE orientation parameters ϑ_x (-7°) and ϑ_z (-2°) also contributed +6 and -3 ppm perturbations, respectively, to $\Delta\sigma$ (Table 2). Therefore, PE being forced upright (lower ϑ_x) by incorporated Rubb₁₂ may have offset $\Delta\sigma$ reductions from glycerol χ disordering.

Rubb₁₂ and Irbb₁₂ are Nonlytic against Dye-Filled Liposomes. Dye release assays of Rubb₁₂ and Irbb₁₂ against carboxyfluorescein-filled liposomes were performed to determine whether membrane lytic mechanisms might play a role in biological activity. Membrane lysis via pore-forming mechanisms has been described for antimicrobial peptides, and a possibility exists that these complexes may have analogous mechanisms of action. Figure 7 shows activity against a simplistic POPC eukaryotic model, a more complex POPC/ SM/Chol (1:1:1) eukaryotic lipid "raft" model,⁶³ a POPG/ TOCL (3:2) Staphyloccus aureus model,⁶⁴ and a POPE/POPG (7:3) E. coli model.⁴⁴ Unsaturated lipids were used exclusively to ensure fluid phases at experimental conditions. The antimicrobial pore-forming peptide, maculatin 1.1 (Mac1), was used as a positive control with potent lytic activity, as described by the concentration of Mac1 at which 50% dye leakage occurs (LC50), against the negatively charged bacterial POPG/TOCL and POPE/POPG membrane mimics,⁶⁵ with

Figure 7. Dye release assays of (A) maculatin 1.1 and (B) Rubb_{12} with LUV composed of POPC (black squares), POPC/SM/Chol (1:1:1; red circles), POPG/TOCL (3:2, blue triangles), and POPE/POPG (7:3; green diamonds). LUV amounted to a total concentration of 100 μ M phospholipid.

 LC_{50} 's of 4.9 \pm 0.2 μ M and 1.9 \pm 0.1 μ M, respectively (see Figure 7A). The activity of Mac1 against POPC (LC₅₀ = $0.19 \pm$ 0.01 μ M) was considerably greater, but not against POPC/SM/ Chol (LC₅₀ = 46 \pm 1 μ M), which may be due to the ordering effect of sphingomyelin and cholesterol. In contrast, Rubb₁₂ and Irbb₁₂, which were titrated as aqueous solutions up to 1:10 molar ratio to lipid as per the stoichiometry used for NMR experiments, displayed no such activity against any of the LUVs tested, which suggests that the cytotoxic activity of these complexes may not directly involve membrane lysis. Increased permeability has, however, been described against S. aureus,⁴⁵ but may be due to factors not found in our model systems. Furthermore, cytotoxicity and uptake studies against mouse primary B cell and L1210 leukemia cell lines have suggested apoptotic mechanisms of cell death from mitochondrial accumulation.⁵

Roles of Membrane Permeability in Antibacterial Activity of Rubb_n Complexes. Two mechanisms for antibacterial action have been identified for Rubb₁₂: (a) membrane permeabilization and (b) inhibition of nucleic acid-mediated (particularly RNA) processes.^{42,45} The membrane interactions of Rubb₁₂ described in this work are obviously of primary importance to the former mechanism, while for the latter mechanism the multistep-process by which Rubb₁₂ permeates a membrane can be regarded as of secondary importance. Cellular uptake of Rubb_n complexes is directly enhanced by increasing the length n of the bridging bb_n ligand, which in turn amplifies antibacterial activity.⁵ However, enhanced uptake and activity of these complexes cannot be argued simply on grounds of lipophilicity alone. For example, the mononuclear $[Ru(Me_4phen)_3]^{2+}$ $(\log P = -1.4)^{66}$ and the rigid dinuclear complex $[{Ru(phen)_2}_2(\mu-tpphz)]^{4+}$ $(\log P =$ -0.96; tpphz is tetrapyridophenazine)⁶⁷ are substantially more lipophilic than Rubb₁₂ (log P = -2.9),⁵ but taken up much less readily.^{6,45} Rather, the span of dinuclear complexes relative a lipid bilayer has appeared to be more relevant for influencing cellular uptake, which at shorter spans, such as Rubb₇ (log P =-3.4), uptake is generally reduced compared to mononuclear

Journal of the American Chemical Society

complexes, but enhanced considerably for longer species. In the current study, the importance of span is reflected by the transmembrane state uniquely adopted by Rubb₁₂ in a bacterial membrane model. For Irbb₁₂, this state was not observed, presumably due to the energetic cost of translocating a 3+ metal center across the membrane, and may explain why the complex is inactive and not taken up by bacterial cells.⁷ Furthermore, the membrane-thinning occurring from incorporation of Rubb₁₂ also provides an explanation for the increased permeability of bacterial cells with Rubb_n complexes, while Ru(Me₄phen)₃]²⁺ has only been found to inhibit nucleic-acid mediated processes.⁴⁵

CONCLUSION

Solid-state NMR of model membranes revealed that Rubb₁₂ inserted into a negatively charged phospholipid bilayer mimic of a bacterial membrane but not into a neutral membrane bilayer mimic of a eukaryotic membrane, while Irbb₁₂ maintained a surface interaction in both model systems. MD simulations directly compared lipid acyl chain and head group structural parameters obtained from NMR and showed that Rubb₁₂ spanned the negatively charged membrane, with the bulky metal centers situated at the glycerol backbone region and the bridging alkane linker threaded through the hydrophobic interior. Membrane-thinning occurred as a result, with the biconic shape of Rubb₁₂ in an extended conformation accommodated by disordering of lipid acyl chains. The transmembrane orientation of Rubb₁₂ in a model bacterial membrane correlates with the potent antibacterial activity of this complex. Furthermore, Rubb₁₂ not appearing to insert into a model eukaryotic membrane, and Irbb₁₂ into neither model, also fits with the relatively low toxicity observed for Rubb₁₂ against human cell lines and the biological inactivity of Irbb₁₂. Neither complex displayed lytic activity against phospholipid vesicle systems according to dye-leakage assays, which precluded a pore-forming mechanism. Insertion of Rubb₁₂ into bacterial membranes may be essential for antibacterial activity, either directly by modification of membrane properties (charge, fluidity/order) or as an intermediate state for uptake into the cell.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b09996.

RESP partial charges and atom types assigned to Rubb₁₂ for MD simulation; fits to T_1 and T_2 ; solid-state ¹H NOESY spectra of Rubb₁₂ incorporated into DMPE/ DMPG and solution-state ROESY spectra of Rubb₁₂; electron density profiles calculated from MD trajectories; area-per-lipid and radial-pair-distribution functions calculated from MD trajectories; static ³¹P spectra and MEMAS surface profiles of gel-phase DMPC and DMPE/DMPG with Rubb₁₂ and Irbb₁₂; T_1 and T_2 relaxation times (PDF)

AUTHOR INFORMATION

Corresponding Authors

*danweb@au1.ibm.com *richard.keene@adelaide.edu.au

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the Victorian Life Sciences Computing Initiative (VLSCI) for the provision of supercomputing resources, and Michael Leeming for his assistance in quantum mechanical calculations. D.K.W. was a recipient of an Australian Postgraduate Award, David Lachlan Hay Memorial Fund Writing-up Award and Dowd Foundation Postgraduate Research Scholarship.

REFERENCES

(1) Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Chem. Commun. 2007, 7345, 4565.

(2) Keene, F. R.; Smith, J. A.; Collins, J. G. Coord. Chem. Rev. 2009, 253, 2021.

(3) Gill, M. R.; Thomas, J. A. Chem. Soc. Rev. 2012, 41, 3179.

(4) Li, F.; Collins, J. G.; Keene, F. R. Chem. Soc. Rev. 2015, 44, 2529.
(5) Li, F.; Mulyana, Y.; Feterl, M.; Warner, J. M.; Collins, J. G.; Keene, F. R. Dalton Trans. 2011, 40, 5032.

(6) Li, F.; Feterl, M.; Mulyana, Y.; Warner, J. M.; Collins, J. G.; Keene, F. R. J. Antimicrob. Chemother. 2012, 67, 2686.

(7) Pandrala, M.; Li, F.; Feterl, M.; Mulyana, Y.; Warner, J. M.; Wallace, L.; Keene, F. R.; Collins, J. G. Dalton Trans. **2013**, 42, 4686.

(8) Pandrala, M.; Li, F.; Wallace, L.; Steel, P. J.; Moore, B., II; Autschbach, J.; Collins, J. G.; Keene, F. R. *Aust. J. Chem.* **2013**, *66*, 1065.

(9) Sani, M.-A.; Separovic, F. J. Magn. Reson. 2015, 253, 138.

(10) Sani, M.-A.; Separovic, F. In Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides; Separovic, F., Naito, A., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2014; pp 287–303.

(11) Weber, D. K.; Gehman, J. D.; Separovic, F.; Sani, M.-A. Aust. J. Chem. 2012, 65, 472.

(12) Gehman, J. D.; Separovic, F. In *Methods in Molecular Biology*; Hill, A. F., Barnham, K. J., Bottomley, S. P., Cappai, R., Eds.; Humana Press: Totowa, NJ, 2011; Vol. 752, pp 165–177.

(13) Gehman, J. D.; O'Brien, C. C.; Shabanpoor, F.; Wade, J. D.; Separovic, F. *Eur. Biophys. J.* **2008**, *37*, 333.

(14) Gehman, J. D.; Separovic, F. In *Modern Magnetic Resonance*; Webb, G. A., Ed.; Springer Netherlands: Dordrecht, 2006; pp 305– 311.

(15) Sani, M.-A.; Separovic, F.; Gehman, J. D. *Biophys. J.* 2011, 100, L40.

(16) Sani, M.-A.; Weber, D. K.; Delaglio, F.; Separovic, F.; Gehman, J. D. PeerJ **2013**, *1*, e30.

(17) Mulyana, Y.; Weber, D. K.; Buck, D. P.; Motti, C. A.; Collins, J. G.; Keene, F. R. *Dalton Trans.* **2011**, *40*, 1510.

(18) Morgan, J. L.; Spillane, C. B.; Smith, J. A.; Buck, D. P.; Collins, J. G.; Keene, F. R. *Dalton Trans.* **2007**, 4333.

(19) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277.

(20) Bak, M.; Rasmussen, J. T.; Nielsen, N. C. J. Magn. Reson. 2000, 147, 296.

(21) Hahn, E. L.; Maxwell, D. E. Phys. Rev. 1952, 88, 1070.

(22) Davis, J. H.; Jeffrey, K. R.; Bloom, M.; Valic, M. I.; Higgs, T. P. Chem. Phys. Lett. **1976**, 42, 390.

(23) Pake, G. E. J. Chem. Phys. 1948, 16, 327.

(24) Burnett, L. J.; Muller, B. H. J. Chem. Phys. 1971, 55, 5829.

(25) Hartmann, S. R.; Hahn, E. L. Phys. Rev. 1962, 128, 2042.

(26) Metz, G.; Wu, X. L.; Smith, S. O. J. Magn. Reson., Ser. A 1994, 110, 219.

(27) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.

(28) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.

(29) Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E., III; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.;

Journal of the American Chemical Society

Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. *AMBER14*; University of California: San Francisco, 2014.

(30) Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F. Y. *Nucleic Acids Res.* **2011**, 39, W511.

(31) Brandt, P.; Norrby, T.; Åkermark, B.; Norrby, P.-O. *Inorg. Chem.* **1998**, 37, 4120.

(32) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.

(33) Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Davila-Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.;

Klauda, J. B.; Im, W. J. Comput. Chem. 2014, 35, 1997. (34) Dickson, C. J.; Madej, B. D.; Skjevik, Å. A.; Betz, R. M.; Teigen,

 K.; Gould, I. R.; Walker, R. C. J. Chem. Theory Comput. 2014, 10, 865.
 (35) Skjevik, Å. A.; Madej, B. D.; Walker, R. C.; Teigen, K. J. Phys. Chem. B 2012, 116, 11124.

(36) Joung, I. S.; Cheatham, T. E. J. Phys. Chem. B 2008, 112, 9020.
(37) Roe, D. R.; Cheatham, T. E. J. Chem. Theory Comput. 2013, 9, 3084.

(38) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.

(39) Herzfeld, J.; Griffin, R. G.; Haberkorn, R. A. *Biochemistry* 1978, 17, 2711.

(40) Seelig, J.; Gally, H. U. Biochemistry 1976, 15, 5199.

(41) Anderson, R. L.; Davis, S. Clin. Chim. Acta 1982, 121, 111.

(42) Li, F.; Harry, E. J.; Bottomley, A. L.; Edstein, M. D.; Birrell, G. W.; Woodward, C. E.; Keene, F. R.; Collins, J. G. *Chem. Sci.* 2014, *5*,

685. (43) Dufourc, E. J.; Mayer, C.; Stohrer, J.; Althoff, G.; Kothe, G. *Biophys. J.* **1992**, *61*, 42.

(44) Morein, S.; Andersson, A. S.; Rilfors, L.; Lindblom, G. J. Biol. Chem. 1996, 271, 6801.

(45) Li, F.; Feterl, M.; Warner, J. M.; Keene, F. R.; Collins, J. G. J. Antimicrob. Chemother. 2013, 68, 2825.

(46) Case, D. A. J. Biomol. NMR 1995, 6, 341.

(47) de Planque, M. R. R.; Bonev, B. B.; Demmers, J. A. A.; Greathouse, D. V.; Koeppe, R. E.; Separovic, F.; Watts, A.; Killian, J. A. *Biochemistry* **2003**, *42*, 5341.

(48) Forbes, J.; Bowers, J.; Shan, X.; Moran, L.; Oldfield, E.; Moscarello, M. A. J. Chem. Soc., Faraday Trans. 1 1988, 84, 3821.

(49) Auger, M. Curr. Opin. Mol. Biol. 2000, 4, 119.

(50) Tang, M.; Waring, A. J.; Hong, M. J. Am. Chem. Soc. 2007, 129, 11438.

(51) Strenk, L. M.; Westerman, P. W.; Doane, J. W. Biophys. J. 1985, 48, 765.

(52) Botan, A.; Favela-Rosales, F.; Fuchs, P. F. J.; Javanainen, M.; Kanduč, M.; Kulig, W.; Lamberg, A.; Loison, C.; Lyubartsev, A.; Miettinen, M. S.; Monticelli, L.; Määttä, J.; Ollila, O. H. S.; Retegan, M.; Róg, T.; Santuz, H.; Tynkkynen, J. *J. Phys. Chem. B* **2015**, *119*, 15075.

(53) Gally, H. U.; Pluschke, G.; Overath, P.; Seelig, J. *Biochemistry* 1981, 20, 1826.

(54) Khandelia, H.; Witzke, S.; Mouritsen, O. G. *Biophys. J.* **2010**, *99*, 3887.

(55) Pastor, R. W.; MacKerell, A. D. J. Phys. Chem. Lett. 2011, 2, 1526.

(56) Aqvist, J. J. Phys. Chem. 1990, 94, 8021.

(57) Skjevik, A. A.; Madej, B. D.; Dickson, C. J.; Lin, C.; Teigen, K.; Walker, R.; Gould, I. R. *Phys. Chem. Chem. Phys.* **2016**, *18*, 10573.

(58) Reymer, A.; Norden, B. Chem. Commun. 2012, 48, 4941.
(59) Pisani, M. J.; Fromm, P. D.; Mulyana, Y.; Clarke, R. J.; Körner,

(39) Fisani, M. J.; Fromin, F. D.; Mulyana, T.; Clarke, K. J.; Kolner, H.; Heimann, K.; Collins, J. G.; Keene, F. R. *ChemMedChem* **2011**, *6*, 848.

(60) Li, L. B.; Vorobyov, I.; Allen, T. W. Biochim. Biophys. Acta, Biomembr. 2012, 1818, 135.

- (61) Vorobyov, I.; Olson, T. E.; Kim, J. H.; Koeppe, R. E.; Andersen, O. S.; Allen, T. W. *Biophys. J.* **2014**, *106*, 586.
- (62) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.
- (63) de Almeida, R. F. M.; Fedorov, A.; Prieto, M. Biophys. J. 2003, 85, 2406.
- (64) Beining, P. R.; Huff, E.; Prescott, B.; Theodore, T. S. J. Bacteriol. 1975, 121, 137.

(65) Sani, M.-A.; Henriques, S. T.; Weber, D.; Separovic, F. J. Biol. Chem. 2015, 290, 19853.

(66) Gorle, A. K.; Feterl, M.; Warner, J. M.; Primrose, S.; Constantinoiu, C. C.; Keene, F. R.; Collins, J. G. *Chem. - Eur. J.* **2015**, 21, 10472.

(67) Gill, M. R.; Garcia-Lara, J.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, J. A. *Nat. Chem.* **2009**, *1*, 662.

Article